D

(Printed Pages 4)

(21223)

Roll No.

B.C.A.-V Sem.

18024

B.C.A. Examination, Dec.-2023 Numerical Methods

(BCA-50%)

Time: Three Hours |

|Maximum Marks: 75

Note: Attempt questions from **all** sections as per instructions. Calculator is allowed.

Section-A

Note: Attempt all the five questions. Each question carries 3 marks. 3×5=15

- Using Newton-Raphson method, find an iterative formula to compute ³√N , where N is a positive number.
- Prove that E∇=∇E=A, where E is shift operator, V is backward difference operator. & A is forward difference operator.

P.T.O.

Find the first derivative of the function given below at the point x = 1.2

<u> </u>		יייי ד	· · · · · · · · · · · · · · · · · · ·		
х	1	2	3	4	5
f(x)	0	1	5	6	8

4. Solve the following equations by using Gauss-elimination method:

$$x - y + z = 1$$

 $-3x + 2y - 3z = -6$
 $2x - 5y + 4z = 5$

 Perform two iterations of Picard's method to find an approximate solution of the initial value problem

$$y' = x+y^2$$
; $y(0) = 1$.

Section-B

Note: Attempt any **two** questions out of the following three questions. Each question carries 7.5 marks, 2×7.5=15

Using method of False position, find a positive root of the equation

$$x^3 - 4x + 1 = 0$$
.

18024/2

 Using Newton's forward interpolation formula, find the cubic polynomial which takes on the following values

x	0	1	2	3	4
у	-1	0	13	50	123

8. Using Simpson's $(\frac{1}{3})^{n}$ rule, find the value of $\int_{1}^{5} f(x) dx$ given that

х	1	2	3	4	5
f(x)	10	1150	70	80	100
Section-C					

Note: Attempt any **three** questions out of the following five questions. Each question carries 15 marks. $3 \times 15 = 45$

- Find a positive root of the equation
 2x=3+cos x by Bisection method.
- 10. Using Lagrange's interpolation formula, find the value of Y corresponding to x=2 from the following table:

х	0		3	4
у	5	6	50	105

18024/3

p.T.O.

- 11. Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using.

 Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.
- 12. Solve by Gauss-Seidel method

$$3x+y+z=1$$

 $x+3y-z=11$
 $x-2y+4z=21$.

 Apply Runge-Kutta method fourth order to find an approximate value of y when

$$x=0.2$$
, given that

$$\frac{dy}{dx} = x + y^2$$
 & y= 1 when x = 0
(take h= 0.1) 6.508